
CS161 Introduction to
Computer Security Discussion 8Fall 2025

Q1 Cross-site not scripting (2 points)

Consider a simple web messaging service. You receive messages from other users. The page shows all
messages sent to you. Its HTML looks like this:

Mallory: Do you have time for a conference call?
Steam: Your account verification code is 86423
Mallory: Where are you? This is important!!!
Steam: Thank you for your purchase

The user is off buying video games from Steam, while Mallory is trying to get ahold of them.

Users can include arbitrary HTML code messages and it will be concatenated into the page, unsani�
tized. Sounds crazy, doesn’t it? However, they have a magical technique that prevents any JavaScript
code from running. Period.

Q1.1 (1 point) Discuss what an attacker could do to snoop on another user’s messages. What specially
crafted messages could Mallory have sent to steal this user’s account verification code?

Q1.2 (1 point) Keeping in mind the attack you constructed in the previous part, what is a defense that
can prevent against it?

Page 1 of 3

This content is protected and may not be shared, uploaded, or distributed.

Q2 Second-order linear… err I mean SQL injection (2 points)

Alice likes to use a startup, NotAmazon, to do her online shopping. Whenever she adds an item to her
cart, a POST request containing the field item is made. On receiving such a request, NotAmazon executes
the following statement:

cart_add := fmt.Sprintf("INSERT INTO cart (session, item) " +
 "VALUES ('%s', '%s')", sessionToken, item)
db.Exec(cart_add)

Each item in the cart is stored as a separate row in the cart table.

Q2.1 (1 point) Alice is in desperate need of some pancake mix, but the website blocks her from adding
more than 72 bags to her cart. Describe a POST request she can make to cause the cart_add
statement to add 100 bags of pancake mix to her cart.

When a user visits their cart, NotAmazon populates the webpage with links to the items. If a user only
has one item in their cart, NotAmazon optimizes the query (avoiding joins) by doing the following:

 cart_query := fmt.Sprintf("SELECT item FROM cart " +
 "WHERE session='%s' LIMIT 1", sessionToken)
 item := db.Query(cart_query)
 link_query = fmt.Sprintf("SELECT link FROM items WHERE item='%s'", item)
 db.Query(link_query)

After part (a), Alice recognizes a great business opportunity and begins reselling all of NotAmazon’s
pancake mix at inflated prices. In a panic, NotAmazon fixes the vulnerability by parameterizing the
cart_add statement.

Q2.2 (1 point) Alice claims that parameterizing the cart_add statement won’t stop her pancake mix
trafficking empire. Describe how she can still add 100 bags of pancake mix to her cart. Assume that
NotAmazon checks that sessionToken is valid before executing any queries involving it.

Discussion 8 Page 2 of 3 CS161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

Q3 Clickjacking (3 points)

In this question we’ll investigate some of the click-jacking methods that have been used to target smart-
phone users.

Q3.1 (1 point) In many smartphone browsers, the address bar containing the page’s URL can be hidden
when the user scrolls. What types of problems can this cause?

Q3.2 (1 point) Smartphone users are used to notifications popping up over their browsers as texts and
calls arrive. How can attackers use this to their advantage?

Q3.3 (1 point) QR codes are used for various wide-ranging applications, for example: ordering at a
restaurant, or providing a job link at a career fair. Can you think of any security vulnerabilities that
might exist with the widespread use of QR codes?

Discussion 8 Page 3 of 3 CS161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

	Cross-site not scripting
	Second-order linear… err I mean SQL injection
	Clickjacking

