
Introduction to Computer Security

Discussion 4

Q1 IND-CPA (5 points)

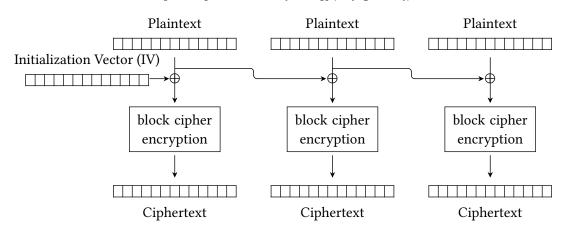
When formalizing the notion of confidentiality, as provided by a proposed encryption scheme, we introduce the concept of indistinguishability under a chosen plaintext attack, or IND-CPA security. A scheme is considered *IND-CPA secure* if an attacker cannot gain any information about a message given its ciphertext. This definition can be defined as an experiment between a challenger and adversary, detailed in the diagram below:

Consider the one-time pad encryption scheme discussed in class. For parts (a) - (c), we will prove why one-time pad is not IND-CPA secure and, thus, why a key should not be reused for one-time pad encryption.

Q1.1 (1 point) What messages (M_0 and M_1) should the adversary provide the challenger?

 (1 point) Now, for which message(s) should the adversary request an encryption from the challenged during the query phase?

(Quest	estion 1 continued)	
		randomly selects $b\in\{0,1\}$, encrypts M_b , and sends back to the adversary. How can the adversary find b with probability $>\frac{1}{2}$?
:	a probability 1 against a dete	r, explain how an adversary can always win the IND-CPA game with rministic encryption algorithm. Note: Given an identical plaintext, a ithm will produce identical ciphertext.
1	· · ·	versary chooses an algorithm and runs the IND-CPA game a large ith a probability of 0.6. Is the encryption scheme IND-CPA secure?
	O Secure O Inse	ecure


$$C_i = \begin{cases} \text{IV, if } i = 0 \\ E_K(C_{i-1}) \oplus P_i, \text{ otherwise} \end{cases}$$

Q2.2 (1 point) What is the decryption formula for CFB mode?
Q2.3 (1 point) Select the true statements about CFB mode:
☐ Encryption can be parallelized ☐ The scheme is IND-CPA secure
☐ Decryption can be parallelized ☐ None of the above
_
Q2.4 (1 point) What happens if two messages are encrypted with the same key and IV? What can the attacker learn about the two messages just by looking at their ciphertexts?
Q2.5 (1 point) If an attacker recovers the IV used for a given encryption, but not the key, will they be ab
to decrypt a ciphertext encrypted with the recovered IV and a secret key? Explain why or why no
○ Yes ○ No

Consider the following block cipher mode of operation.

 M_i is the i-th block of plaintext. C_i is the i-th block of ciphertext. E_K is AES encryption with key K.

$$C_0 = M_0 = \mathrm{IV} \qquad C_i = E_K(M_{i-1} \oplus M_i)$$

- Q3.1 (1 point) Which of the following is true about this scheme? Select all that apply.
 - ☐ The encryption algorithm is parallelizable
 - \square If one byte of a plaintext block M_i is changed, then the corresponding ciphertext block C_i will be different in exactly one byte.
 - \square If one byte of a plaintext block M_i is changed, then the next ciphertext block C_{i+1} will be different in exactly one byte
 - ☐ The encryption algorithm requires padding the plaintext
 - O None of the above
- Q3.2 (1 point) True or False: If the IV is always a block of all 0's for every encryption, this scheme is IND-CPA secure. Briefly justify your answer.
 - O True O False

Q3.3 (1 point) True or False: If the *IV* is randomly generated for every encryption, this scheme is IND-CPA secure. Justify your answer.

O True	O F.	ALSE