© 00 N O O b WN -

W W WNNNNDNMNNMNDNDNNDDNRERRB B B B B B B 2
N, O © 00 ~NO O P WNEFE O OOWNO O P WM~ O

CS161 Introduction to

. Discussion 2
Summer 2025 Computer Securlty

Q1 Software Vulnerabilities (4 points)
For the following code, assume an attacker can control the value of basket, n, and owner_name passed
into search_basket.

This code contains several security vulnerabilities. Circle three such vulnerabilities in the code and
briefly explain each of the three on the next page.

struct cat {
char name[64];
char owner[64];
int age;

};

/* Searches through a BASKET of cats of length N (N should be less than 32).
Adopts all cats with age less than 12 (kittens).
Adopted kittens have their owner name overwritten with OWNER_NAME.
Returns the number of kittens adopted. */
size_t search_basket(struct cat *basket, int n, char *owner_name) {
struct cat kittens[32];
size_t num_kittens = 0;
if (n > 32) return -1;
for (size_t i = 0; i <= n; i++) {
if (basket[i].age < 12) {
/* Reassign the owner name. */
strcpy(basket[i] .owner, owner_name);
/* Copy the kitten from the basket. */
kittens [num_kittens] = basketl[i];
num_kittens++;
/* Print helpful message. */
printf ("Adopting kitten: ");
printf (basket[i] .name) ;
printf ("\n");

}
/* Adopt kittens. */

adopt_kittens(kittens, num_kittens); // Implementation not shown.

return num_kittens;

Page 1 of 7

1
f

This content is protected and may not be shared, uploaded, or distributed.



(Question 1 continued...)

Q1.1 (1 point) Explanation:

Solution: Line 15 has a fencepost error: the conditional test should be i < n rather than

i <= n. The test at line 14 assures that n doesn’t exceed 32, but if it’s equal to 32, and if all of the
cats in basket are kittens, then the assignment at line 20 will write past the end of kittens,
representing a buffer overflow vulnerability.

Q1.2 (1 point) Explanation:

Solution: At line 15, we are checking if i <= n. i is an unsigned int and n is a signed int, so
during the comparison n is cast to an unsigned int. We can pass in a value such asn = -1 and this
would be cast to Oxfff£ffff which allows the for loop to keep going and write past the buffer.

Q1.3 (1 point) Explanation:

Solution: On line 18 there is a call to strcpy which writes the contents of owner _name, which is
controlled by the attacker, into the owner instance variable of the cat struct. There are no checks
that the length of the destination buffer is greater than or equal to the source buffer owner_name
and therefore the buffer can be overflown.

Alternate Solution: On line 24 there is a printf call which prints the value stored in the name
instance variable of the cat struct. This input is controlled by the attacker and is therefore subject
to format string vulnerabilities since the attacker could assign the cats names with string formats
in them.

Some more minor issues concern the name strings in basket possibly not being correctly termi-

nated with '\0"' characters, which could lead to reading of memory outside of basket at line 24.

Q1.4 (1 point) Describe how an attacker could exploit these vulnerabilities to run shellcode:

Solution: Each vulnerability could lead to code execution. An attacker could also use the
fencepost or the bound-checking error to overwrite the RIP and execute arbitrary code.

Discussion 2 Page 2 of 7 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.



© 00 N O O b WN -

o
= O

Q2 Hacked EvanBot (12 points)

Hacked EvanBot is running code to violate students’ privacy, and it’s up to you to disable it before it’s
too late!

#include <stdio.h>

void spy_on_students(void) {
char buffer[16];
fread(buffer, 1, 24, stdin);
}

int main() {
spy_on_students() ;
return O;

}

The shutdown code for Hacked EvanBot is located at address Oxdeadbeef, but there’s just one problem —
Bot has learned a new memory safety defense. Before returning from a function, it will check that its
saved return address (rip) is not Oxdeadbeef, and throw an error if the rip is Oxdeadbeef.

Clarification during exam: Assume little-endian x86 for all questions.

Assume all x86 instructions are 8 bytes long. Assume all compiler optimizations and buffer overflow
defenses are disabled.

The address of buffer is Oxbf£f££110.

Q2.1 (3 points) In the next 3 subparts, you’ll supply a malicious input to the fread call at line 5 that
causes the program to execute instructions at Oxdeadbeef, without overwriting the rip with the
value Oxdeadbeef.

The first part of your input should be a single assembly instruction. What is the instruction? x86
pseudocode or a brief description of what the instruction should do (5 words max) is fine.

jmp *Oxdeadbeef

Solution: You can’t overwrite the rip with Oxdeadbeef, but you can still overwrite the rip to
point at arbitrary instructions located somewhere else. The idea here is to overwrite the rip to
execute instructions in the buffer, and write a single jump instruction that starts executing code
at Oxdeadbeef.

Discussion 2 (Question 2 continues...) Page 3 of 7 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.



(Question 2 continued...)

Q2.2 (3 points) The second part of your input should be some garbage bytes. How many garbage bytes
do you need to write?

Oo O1 Os o O 16

Solution: After the 8-byte instruction from the previous part, we need another 8 bytes to fill

buffer, and then another 4 bytes to overwrite the sfp, for a total of 12 garbage bytes.

Q2.3 (3 points) What are the last 4 bytes of your input? Write your answer in Project 1 Python syntax,
e.g. \x12\x34\x56\x78.

\x10\xf1\xff\xbf

Solution: This is the address of the jump instruction at the beginning of buffer.

Q2.4 (3 points) When does your exploit start executing instructions at Oxdeadbeef?

QO Immediately when the program starts
(O When the main function returns
@ When the spy_on_students function returns

O When the fread function returns

Solution: The exploit overwrites the rip of spy_on_students, so when the spy_on_students
function returns, the program will jump to the overwritten rip and start executing arbitrary
instructions.

Discussion 2 Page 4 of 7 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.



© 0 N O O b W N -

NNNR R R B B B 2 B B
N, O O 0 ~NO O b W= O

Q3

I Understood that Reference!

Consider the following vulnerable C code:

(12 points)

int

}

void vulnerable(int start, char *ptr) {

ptrstart] = ptr([3];

ptristart + 1] = ptr[2];
ptrlstart + 2] = ptr[i];
ptrstart + 3] = ptr[0];

void helper(int8_t num) {

if (num > 124) {
return;

}

char arr[128];

fgets(arr, 128, stdin);

vulnerable(num, arr);

main(void) {

int y;

fread(&y, sizeof(int), 1, stdin);
helper(y);

return O;

Assume that:

 You are on a little-endian 32-bit x86 system.

+ There is no other compile padding or saved additional registers.

Write your answer in Python 3 syntax (just like in Project 1).

Discussion 2 (Question 3 continues...) Page 5 of 7

This content is protected and may not be shared, uploaded, or distributed.

CS161 — Summer 2025



(Question 3 continued...)

Q3.1 (2 points) Fill in the stack diagram below, assuming that execution has entered the call to

vulnerable:

Stack

RIP of main

SFP of main

y

num

RIP of helper

SFP of helper

arr

ptr

start

RIP of vulnerable

SFP of vulnerable

Solution: Notice that when integer arguments are passed to functions, their values are directly
placed on the stack (not pointers, like strings).

Discussion 2 (Question 3 continues...)

Page 6 of 7

This content is protected and may not be shared, uploaded, or distributed.

CS161 — Summer 2025



(Question 3 continued...)

For the rest of this question, assume that the RIP of main is located at 0OxbfffdcOc and that your malicious
shellcode is located at 0xe£302010.

In the next two subparts, construct an exploit that executes your malicious shellcode.

Q3.2 (5 points) Provide an input to the variable y in the fread in main.

For this subpart only, you may write a decimal number instead of its byte representation.

-12

Solution: This attack involves noticing that we’re indexing into the ptr array using a value that
we control (we choose the value of start through the fread call in main). With this, we can
think about how to overwrite one of the RIP’s present on our stack. There’s a catch, though —
since start is restricted to values less than 127, and arr is 128 bytes long, we can’t write over
the RIP of helper; however, we can set start to a negative number to index downwards and
override the RIP of vulnerable. That RIP lives three words below the start of the array, so we
start at array index -12.

Any number with the final byte set to '\xf4' will work. We want to choose some y such that,
when cast to an int8_t, it becomes -12.

Q3.3 (5 points) Provide an input to the variable arr in the fgets in helper.

\xef\x30\x20\x10

Solution: We need to reverse the order of the bytes in our new RIP address, since they’re read
in reverse of our normal direction (starting at ptr [3] and going to ptr [0]). Once this address
is placed into the array, it’ll be in little-endian format.

Discussion 2 Page 7 of 7 CS161 — Summer 2025

This content is protected and may not be shared, uploaded, or distributed.



	Software Vulnerabilities
	Hacked EvanBot
	I Understood that Reference!

