
CS161 Introduction to
Computer Security Discussion 1Fall 2025

Q1 Security Principles (10 points)

We discussed the following security principles in lecture (or in the textbook):

A. Know Your Threat Model: Know your attacker
and their resources; the security assumptions
originally made may no longer be valid

B. Consider Human Factors: Security systems must
be usable by ordinary people

C. Security is Economics: Security is a cost-benefit
analysis, since adding security usually costs
more money

D. Detect If You Can’t Prevent: If one cannot pre-
vent an attack, one should be able to at least
detect when an attack happens

E. Defense in Depth: Layer multiple defenses to-
gether

F. Least Privilege: Minimize how much privilege
you give each program and system component

G. Separation of Responsibility: Split up privilege,
so no one person or program has complete
power

H. Ensure complete mediation: Make sure to check
every access to every object

I. Consider Shannon’s Maxim: Do not rely on se-
curity through obscurity

J. Use fail-safe defaults: If security mechanisms
fail or crash, they should default to secure be-
havior

K. Design in security from the start: Retrofitting
security to an existing application after it has
been developed is a difficult proposition

Identify the principle(s) relevant to each of the following scenarios.

Note that there may be more than one principle that applies in some of these scenarios.

Q1.1 (1 point) New cars often come with a valet key. This key is intended to be used by valet drivers who
park your car for you. The key opens the door and turns on the ignition, but it does not open the
trunk or the glove compartment.

Solution: Least Privilege. They do not need to access your trunk or your glove box, so you
don’t give them access to do so.

Q1.2 (1 point) Many homeowners leave a house key under the floor mat in front of their door.

Solution: Shannon’s Maxim. The security of your home depends on the belief that most
criminals don’t know where your key is. With a modicum of effort, criminals could find your key
and open the lock.

Q1.3 (1 point) It is not worth it to use a $400,000 bike lock to protect a $100 bike.

Solution: Security is Economics. It is more expensive to buy $400 bike lock than to simply
buy a new bike to replace it.

Page 1 of 7

This content is protected and may not be shared, uploaded, or distributed.

(Question 1 continued…)

Q1.4 (1 point) Social security numbers were not originally designed as a secret identifier. Nowadays, they
are often easily obtainable or guessable.

Solution: Design security from the start. Social security numbers were not designed
to be authenticators, so security was not designed from the start. The number is based
on a geographic region, a sequential group number, and a sequential serial number. They
have since been repurposed as authenticators.

Q1.5 (1 point) Warranties on cell phones do not cover accidental damage, which includes liquid damage.
However, many consumers who accidentally damage their phones with liquid will wait for it to
dry and then claim that “it broke by itself.” To combat this threat, many companies have begun to
include on the product a small sticker that turns red (and stays red) when it gets wet.

Solution: There are probably two most relevant factors. In order of relevance:

Detect if you can’t prevent. It’s prudent to try to add ways to detect something when creating
the phone since something like water damage is impossible to prevent.

Consider Human Factors. People will always try to lie and you must account for that when
creating a system.

Q1.6 (1 point) Even if you use a password on your laptop lock screen, there is software that lets a skilled
attacker with specialized equipment bypass it.

Solution: Know Your Threat Model. Most petty thieves do not have access to this software.

Q1.7 (1 point) Shamir’s secret sharing scheme allows us to split a “secret” between multiple people so
that all of them have to collaborate in order to recover the secret.

Solution: Separation of Responsibility. Everyone is required to come together to produce the
secret, preventing one person from using the secret alone.

Q1.8 (1 point) Banks often make you answer your security questions over the phone. Answers to these
questions are “low entropy,” meaning that they are easy to guess. Some security-conscious people
instead use a random password as the answer to the security question.¹ However, attackers can
sometimes convince the phone representative by claiming “I just put in some nonsense for that
question.”

Solution: Consider Human Factors. The phone rep is inclined to believe the attacker
is not malicious (social engineering).

Q1.9 (1 point) Often times at bars, an employee will wait outside the only entrance to the bar, enforcing
that people who want to enter the bar form a single-file line. Then, the employee checks each
individual’s ID to verify if they are 21 before allowing them entry into the bar.

Solution: Ensure Complete Mediation. There is a single access point through which everyone
who wishes to enter the bar must be verified to be 21 before obtaining access.

¹Q: What is your dog’s maiden name? A: “60ba6b1c881c6b87”

Discussion 1 (Question 1 continues…) Page 2 of 7 CS161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 1 continued…)

Q1.10 (1 point) Some electric vehicles come equipped with a secure park mode which records footage of
any break-ins to the vehicle and alerts the vehicle owner of the incident.

Solution: Detect if you can’t prevent. The vehicle owner learns about the intrusion into their
vehicle even if they were not able to prevent it.

Discussion 1 Page 3 of 7 CS161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

Q2 Stack Diagram Practice (3 points)

For your reference, reproduced below are the 11 steps of x86 calling convention:
1. Push arguments onto the stack.

2. Push the old eip (rip) onto the stack

3. Move EIP

Execution changes to the callee here.

4. Push the old ebp (sfp) onto the stack. (push %ebp)

5. Move ebp down. (mov %esp, %ebp)

6. Move esp down.

7. Execute the function.

8. Move esp up. (mov %ebp, %esp)

9. Restore the old ebp (sfp). (pop %ebp)

10. Restore the old eip (rip). (pop %eip)

11. Remove arguments from the stack.

Consider the following function.

1 int swap(int* num1, int* num2, int arr_local[]) {
2 int temp = *num1;
3 *num1 = *num2;
4 arr_local[0] = *num1;
5 *num2 = temp;
6 arr_local[1] = *num2;
7 return 0;
8 }
9

10 int main(void) {
11 int x = 61;
12 int y = 1;
13 int arr[2];
14 swap(&x, &y, arr);
15 return 0;
16 }

Discussion 1 (Question 2 continues…) Page 4 of 7 CS161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 2 continued…)

Q2.1 (1 point) Draw the stack diagram if the code were executed until a breakpoint set on line 4. Assume
normal (non-malicious) program execution. You do not need to write the values on the stack, only
the names. When drawing the stack diagram, assume that each row in your diagram doesn’t have
to represent 4 bytes in memory. The bottom of the page represents the lower addresses.

[4] RIP of main

[4] SFP of main

[4] x

[4] y

[8] arr

[4] int* arr_local

[4] int* num2

[4] int* num1

[4] RIP of swap

[4] SFP of swap

[4] temp

Discussion 1 (Question 2 continues…) Page 5 of 7 CS161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

(Question 2 continued…)

Q2.2 (1 point) Now, draw arrows on the stack diagram denoting where the ESP and EBP would point if
the code were executed until a breakpoint set on line 4. Label these ESP4 and EBP4 respectively.

Solution: The ESP should point to temp and the EBP should point to SFP of swap.

[4] RIP of main
[4] SFP of main
[4] x
[4] y
[4] x
[8] arr
[4] int* arr_local
[4] int* num2
[4] int* num1
[4] RIP of swap

EBP4 → [4] SFP of swap

ESP4 → [4] temp

Q2.3 (1 point) The return instruction executes steps 8-10 of the calling convention. Draw arrows on the
stack diagram denoting where the ESP and EBP would point for each of these steps. Label these
ESP8-10 and EBP8-10 respectively.

Solution:
1. ESP8 and EBP8 point to SFP of swap.
2. ESP9 points to RIP of swap and EBP9 points to SFP of main.
3. ESP10 points to int* num1 and EBP10 points to SFP of main.

Note that EIP now points to line 15.

[4] RIP of main

EBP9, EBP10 → [4] SFP of main
[4] x
[4] y
[4] x
[8] arr
[4] int* arr_local
[4] int* num2

ESP10 → [4] int* num1

ESP9 → [4] RIP of swap

ESP8, EBP8 → [4] SFP of swap
[4] temp

Discussion 1 Page 6 of 7 CS161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

Q3 x86 Potpourri (8 points)

Q3.1 (1 point) In normal (non-malicious) programs, the EBP is always greater than or equal to the ESP.

True False

Q3.2 (1 point) Arguments are pushed onto the stack in the same order they are listed in the function
signature.

True False

Solution: Arguments are pushed in reverse order.

Q3.3 (1 point) A function always knows ahead of time how much stack space it needs to allocate.

True False

Solution: This corresponds to Step 6 of the calling convention.

Q3.4 (1 point) Step 10 (“Restore the old eip (rip).”) is often done via the ret instruction.

True False

Solution: ret is equivalent to pop %eip.

Q3.5 (1 point) In GDB, you run x/wx &arr and see this output:

 0xfffff62a: 0xfffff70c

True or False: 0xfffff62a is the address of arr and 0xfffff70c is the value stored at &arr.

True False

Solution: The left side of a GDB output corresponds to the address, and the right side corre-
sponds to the value at the address.

Q3.6 (1 point) Which steps of the x86 calling convention are executed by the caller?

Steps 1, 2, 3, and 11.

Q3.7 (1 point) Which steps of the x86 calling convention are considered the “function epilogue”?

Steps 8-10.

Q3.8 (1 point) What does the nop instruction do?

Solution: nop does nothing and moves the EIP to the next instruction.

Discussion 1 Page 7 of 7 CS161 — Fall 2025

This content is protected and may not be shared, uploaded, or distributed.

	Security Principles
	Stack Diagram Practice
	x86 Potpourri

